Gene Flow and Recruitment Patterns among Disjunct Populations of Allocasuarina verticillata (Lam.) L.A.S. Johnson

Author:

Zhang YongORCID,England Nigel,Broadhurst LindaORCID,Li Lan,Zhong Chonglu,Bush DavidORCID

Abstract

Allocasuarina verticillata (Lam.) L.A.S. Johnson is a widespread species in south-eastern Australia providing vegetation cover, protecting fragile soils and providing food for birds. Understanding the effects of gene flow on the recruitment patterns, genetic differentiation and structure of fragmented populations provides fundamental guidelines to underpin plant conservation strategies and activities. In this study, four spatially disjunct populations of A. verticillata were sampled to explore the effects of population size, reproductive patterns and pollen and seed dispersal on among-population genetic diversity, genetic differentiation and structure, using field survey and microsatellite marker techniques. It was found that stands of A. verticillata were predominantly sexually reproductive, but asexual reproduction through root suckering was an additional mode of reproduction. The reproductive success of A. verticillata is positively correlated with the effective population size rather than actual population size. The reduction in effective population size and increment of spatial isolation resulted in lower genetic diversity and higher inbreeding coefficient of progenies. Moderate pairwise genetic differentiation and weak genetic structure were identified. The results suggest that exogenous, wind-mediated pollen flow provides some maintenance of genetic diversity in the isolated stands. Seed dispersal appears mainly to be over short distances (i.e., within populations), but the infrequent transport of seeds between disjunct locations cannot be ruled out as another factor that may help maintain genetic diversity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3