Theoretical Study on Zearalenol Compounds Binding with Wild Type Zearalenone Hydrolase and V153H Mutant

Author:

Liu Ye,Wan Youzhong,Zhu Jingxuan,Yu Zhengfei,Tian Xiaopian,Han Jiarui,Zhang ZuomingORCID,Han Weiwei

Abstract

Zearalenone hydrolase (ZHD) is the only reported α/β-hydrolase that can detoxify zearalenone (ZEN). ZHD has demonstrated its potential as a treatment for ZEN contamination that will not result in damage to cereal crops. Recent researches have shown that the V153H mutant ZHD increased the specific activity against α-ZOL, but decreased its specific activity to β-ZOL. To understand whyV153H mutation showed catalytic specificity for α-ZOL, four molecular dynamics simulations combining with protein network analysis for wild type ZHD α-ZOL, ZHD β-ZOL, V153H α-ZOL, and V153H β-ZOL complexes were performed using Gromacs software. Our theoretical results indicated that the V153H mutant could cause a conformational switch at the cap domain (residues Gly161–Thr190) to affect the relative position catalytic residue (H242). Protein network analysis illustrated that the V153H mutation enhanced the communication with the whole protein and residues with high betweenness in the four complexes, which were primarily assembled in the cap domain and residues Met241 to Tyr245 regions. In addition, the existence of α-ZOL binding to V153H mutation enlarged the distance from the OAE atom in α-ZOL to the NE2 atom in His242, which prompted the side chain of H242 to the position with catalytic activity, thereby increasing the activity of V153H on the α-ZOL. Furthermore, α-ZOL could easily form a right attack angle and attack distance in the ZHD and α-ZOL complex to guarantee catalytic reaction. The alanine scanning results indicated that modifications of the residues in the cap domain produced significant changes in the binding affinity for α-ZOL and β-ZOL. Our results may provide useful theoretical evidence for the mechanism underlying the catalytic specificity of ZHD.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3