The Motion Paradigm of Pre-Dock Zearalenone Hydrolase Predictions with Molecular Dynamics and the Docking Phase with Umbrella Sampling

Author:

Hong Xi-Zhi1,Han Zheng-Gang1,Yang Jiang-Ke1,Liu Yi-Han2ORCID

Affiliation:

1. Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430024, China

2. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300453, China

Abstract

Zearalenone (ZEN) is one of the most prevalent estrogenic mycotoxins, is produced mainly by the Fusarium family of fungi, and poses a risk to the health of animals. Zearalenone hydrolase (ZHD) is an important enzyme capable of degrading ZEN into a non-toxic compound. Although previous research has investigated the catalytic mechanism of ZHD, information on its dynamic interaction with ZEN remains unknown. This study aimed to develop a pipeline for identifying the allosteric pathway of ZHD. Using an identity analysis, we identified hub genes whose sequences can generalize a set of sequences in a protein family. We then utilized a neural relational inference (NRI) model to identify the allosteric pathway of the protein throughout the entire molecular dynamics simulation. The production run lasted 1 microsecond, and we analyzed residues 139–222 for the allosteric pathway using the NRI model. We found that the cap domain of the protein opened up during catalysis, resembling a hemostatic tape. We used umbrella sampling to simulate the dynamic docking phase of the ligand–protein complex and found that the protein took on a square sandwich shape. Our energy analysis, using both molecular mechanics/Poisson–Boltzmann (Generalized-Born) surface area (MMPBSA) and Potential Mean Force (PMF) analysis, showed discrepancies, with scores of −8.45 kcal/mol and −1.95 kcal/mol, respectively. MMPBSA, however, obtained a similar score to that of a previous report.

Funder

National Key Research and Development Program of China

Key R&D projects in Hubei Province, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3