Circulating Serum miRNA-205 as a Diagnostic Biomarker for Ototoxicity in Mice Treated with Aminoglycoside Antibiotics

Author:

Lee Sun,Ju Hyun,Choi Jin,Ahn Yeji,Lee Suhun,Seo Young

Abstract

Background: To confirm levels and detection timing of circulating microRNAs (miRNAs) in the serum of a mouse model for diagnosis of ototoxicity, circulating miR-205 in the serum was evaluated to reflect damages in the cochlear microstructure and compared to a kidney injury model. Method: A microarray for miRNAs in the serum was performed to assess the ototoxic effects of kanamycin-furosemide. Changes in the levels for the selected miRNAs (miR-205, miR-183, and miR-103) were compared in the serum and microstructures of the cochlea (stria vascularis, organ of Corti, and modiolus) between the ototoxicity and normal mouse groups. An acute kidney injury (AKI) mouse model was used to assess changes in miR-205 levels in the kidney by ototoxic drugs. Results: In the mouse model for ototoxicity, the serum levels of circulating miR-205 peaked on day 3 and were sustained from days 7–14. Furthermore, miR-205 expression was highly expressed in the organ of Corti at day 5, continued to be expressed in the modiolus at high levels until day 14, and was finally also in the stria vascularis. The serum miR-205 in the AKI mice did not change significantly compared to the normal group. Conclusions Circulating miR-205 from the cochlea, after ototoxic damage, migrates through the blood vessels to organs, which is then finally found in blood. In conditions of hearing impairment with ototoxic medications, detection of circulating miR-205 in the blood can be used to determine the extent of hearing loss. In the future, inner ear damage can be identified by simply performing a blood test before the hearing impairment due to ototoxic drugs.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3