Radar and Jammer Intelligent Game under Jamming Power Dynamic Allocation

Author:

Geng JieORCID,Jiu Bo,Li Kang,Zhao Yu,Liu Hongwei,Li Hailin

Abstract

In modern electronic warfare, the intelligence of the jammer greatly worsens the anti-jamming performance of traditional passive suppression methods. How to actively design anti-jamming strategies to deal with intelligent jammers is crucial to the radar system. In the existing research on radar anti-jamming strategies’ design, the assumption of jammers is too ideal. To establish a model that is closer to real electronic warfare, this paper explores the intelligent game between a subpulse-level frequency-agile (FA) radar and a transmit/receive time-sharing jammer under jamming power dynamic allocation. Firstly, the discrete allocation model of jamming power is established, and the multiple-round sequential interaction between the radar and the jammer is described based on an extensive-form game. A detection probability calculation method based on the signal-to-interference-pulse-noise ratio (SINR) accumulation gain criterion (SAGC) is proposed to evaluate the game results. Secondly, considering that the competition between the radar and the jammer has the feature of imperfect information, we utilized neural fictitious self-play (NFSP), an end-to-end deep reinforcement learning (DRL) algorithm, to find the Nash equilibrium (NE) of the game. Finally, the simulation results showed that the game between the radar and the jammer can converge to an approximate NE under the established model. The approximate NE strategies are better than the elementary strategies from the perspective of detection probability. In addition, comparing NFSP and the deep Q-network (DQN) illustrates the effectiveness of NFSP in solving the NE of imperfect information games.

Funder

National Natural Science Foundation of China

Fund for Foreign Scholars in University Research and Teaching Programs

stabilization support of National Radar Signal Processing Laboratory

undamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference44 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3