Robust Antijamming Strategy Design for Frequency-Agile Radar against Main Lobe Jamming

Author:

Li Kang,Jiu Bo,Liu Hongwei,Pu Wenqiang

Abstract

To combat main lobe jamming, preventive measures can be applied to radar in advance based on the concept of active antagonism, and efficient antijamming strategies can be designed through reinforcement learning. However, uncertainties in the radar and the jammer, which will result in a mismatch between the test and training environments, are not considered. Therefore, a robust antijamming strategy design method is proposed in this paper, in which frequency-agile radar and a main lobe jammer are considered. This problem is first formulated under the framework of Wasserstein robust reinforcement learning. Then, the method of imitation learning-based jamming strategy parameterization is presented to express the given jamming strategy mathematically. To reduce the number of parameters that require optimization, a perturbation method inspired by NoisyNet is also proposed. Finally, robust antijamming strategies are designed by incorporating jamming strategy parameterization and jamming strategy perturbation into Wasserstein robust reinforcement learning. The simulation results show that the robust antijamming strategy leads to improved radar performance compared with the nonrobust antijamming strategy when uncertainties exist in the radar and the jammer.

Funder

the Nation Natural Science Foundation of China, 647 the Fund for Foreign Scholars in University Research and Teaching Programs

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Main lobe Anti-Jamming via Eigen-Projection Processing and Covariance Matrix Reconstruction;Luo;IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,2017

2. Introduction to Electronic Defense Systems;Neri,2006

3. Analysis of Random Step Frequency Radar and Comparison With Experiments;Axelsson;IEEE Trans. Geosci. Remote Sens.,2007

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3