A Modified RNN-Based Deep Learning Method for Prediction of Atmospheric Visibility

Author:

Zang Zengliang1,Bao Xulun2ORCID,Li Yi1,Qu Youming3,Niu Dan4,Liu Ning1,Chen Xisong4

Affiliation:

1. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China

2. School of Software, Southeast University, Suzhou 215123, China

3. Hunan Meteorological Information Center, Changsha 410000, China

4. School of Automation, Southeast University, Nanjing 210096, China

Abstract

Accurate atmospheric visibility prediction is of great significance to public transport safety. However, since it is affected by multiple factors, there still remains difficulties in predicting its heterogenous spatial distribution and rapid temporal variation. In this paper, a recursive neural network (RNN) prediction model modified with the frame-hopping transmission gate (FHTG), feature fusion module (FFM) and reverse scheduled sampling (RSS), named SwiftRNN, is developed. The new FHTG is used to accelerate training, the FFM is used for extraction and fusion of global and local features, and the RSS is employed to learn spatial details and improve prediction accuracy. Based on the ground-based monitoring data of atmospheric visibility from the China Meteorological Information Center during 1 January 2018 to 31 December 2020, the SwiftRNN model and two traditional ConvLSTM and PredRNN models are performed to predict hourly atmospheric visibility in central and eastern China at a lead of 12 h. The results show that the SwiftRNN model has better performance in the skill scores of visibility prediction than those of the ConvLSTM and PredRNN model. The averaged structural similarity (SSIM) of predictions at a lead up to 12 h is 0.444, 0.425 and 0.399 for the SwiftRNN, PredRNN and ConvLSTM model, respectively, and the averaged image perception similarity (LPIPS) is 0.289, 0.315 and 0.328, respectively. The averaged critical success index (CSI) of predictions over 1000 m fog area is 0.221, 0.205 and 0.194, respectively. Moreover, the training speed of the SwiftRNN model is 14.3% faster than the PredRNN model. It is also found that the prediction effect of the SwiftRNN model over 1000 m medium grade fog area is significantly improved along with lead times compared with the ConvLSTM and PredRNN model. All above results demonstrate the SwiftRNN model is a powerful tool in predicting atmospheric visibility.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. Distinct impact of different types of aerosols on surface solar radiation in China;Yang;J. Geophys. Res. Atmos.,2016

2. Impact of aerosols on tropical cyclone-induced precipitation over the mainland of China;Yang;Clim. Chang.,2018

3. Weather forecasting with ensemble methods;Gneiting;Science,2005

4. Machine learning tapped to improve climate forecasts;Jones;Nature,2017

5. Schmid, F., Wang, Y., and Harou, A. (2017). WMO-No. 1198, World Meteorological Organization. Chapter 5.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3