Durability of Wood Exposed to Alternating Climate Test and Natural Weathering

Author:

Stadlmann Alexander,Pramreiter MaximilianORCID,Stingl Robert,Kurzböck Christian,Jost Thomas,Müller Ulrich

Abstract

The use of wood-based materials in the automotive industry is currently under discussion and investigation. One of the major material requirements for such applications is sufficient weathering stability. This can be demonstrated by an accelerated aging process in which the samples are exposed to changing climatic conditions and a spray mist of an aqueous NaCl solution. The effects of media salt (NaCl) on the mechanical and physical properties of wood have scarcely been investigated. The presented study investigated the changes in bending strength (MOR), modulus of elasticity (MOE), and impact bending strength (α) of naturally and artificially weathered oak (Quercus spp.) and birch (Betula pendula Roth) wood. The tests provided comparable results. The decrease under natural weathering of oak was 3.73%, 4.69%, and 6.45% for MOR, MOE, and α. Under artificial weathering the decrease observed for oak was 7.33%, 10.87%, and 16.29% and 3.2%, 8.21%, and 4.03% for birch respectively. It is remarkable that α increased for birch wood at the beginning of the artificial weathering cycles. The penetration of the aqueous NaCl solution into the wood substance resulted in an increase in the wood’s equilibrium moisture content (EMC), which can be explained by the stronger hygroscopic properties of NaCl compared to wood. The higher impact strength at the beginning of artificial weathering can be partly explained by this increase in EMC. In order to investigate the penetration behavior of salt into the wood substrate, the artificially weathered samples were examined by means of energy dispersive X-ray analysis (EDX) and it was shown that the salt concentration changes significantly over the weathering cycles and sample cross-section.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3