Blockchain-Assisted Hybrid Harris Hawks Optimization Based Deep DDoS Attack Detection in the IoT Environment

Author:

Katib Iyad1ORCID,Ragab Mahmoud2ORCID

Affiliation:

1. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

The Internet of Things (IoT) is developing as a novel phenomenon that is applied in the growth of several crucial applications. However, these applications continue to function on a centralized storage structure, which leads to several major problems, such as security, privacy, and a single point of failure. In recent years, blockchain (BC) technology has become a pillar for the progression of IoT-based applications. The BC technique is utilized to resolve the security, privacy, and single point of failure (third-part dependency) issues encountered in IoT applications. Conversely, the distributed denial of service (DDoS) attacks on mining pools revealed the existence of vital fault lines amongst the BC-assisted IoT networks. Therefore, the current study designs a hybrid Harris Hawks with sine cosine and a deep learning-based intrusion detection system (H3SC-DLIDS) for a BC-supported IoT environment. The aim of the presented H3SC-DLIDS approach is to recognize the presence of DDoS attacks in the BC-assisted IoT environment. To enable secure communication in the IoT networks, BC technology is used. The proposed H3SC-DLIDS technique designs a H3SC technique by integrating the concepts of Harris Hawks optimization (HHO) and sine cosine algorithm (SCA) for feature selection. For the intrusion detection process, a long short-term memory auto-encoder (LSTM-AE) model is utilized in this study. Finally, the arithmetic optimization algorithm (AOA) is implemented for hyperparameter tuning of the LSTM-AE technique. The proposed H3SC-DLIDS method was experimentally validated using the BoT-IoT database, and the results indicate the superior performance of the proposed H3SC-DLIDS technique over other existing methods, with a maximum accuracy of 99.05%.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3