Deep Learning-Based Malicious Smart Contract and Intrusion Detection System for IoT Environment

Author:

Shah Harshit,Shah DhruvilORCID,Jadav Nilesh Kumar,Gupta Rajesh,Tanwar SudeepORCID,Alfarraj OsamaORCID,Tolba AmrORCID,Raboaca Maria SimonaORCID,Marina Verdes

Abstract

The Internet of Things (IoT) is a key enabler technology that recently received significant attention from the scientific community across the globe. It helps transform everyone’s life by connecting physical and virtual devices with each other to offer staggering benefits, such as automation and control, higher productivity, real-time information access, and improved efficiency. However, IoT devices and their accumulated data are susceptible to various security threats and vulnerabilities, such as data integrity, denial-of-service, interception, and information disclosure attacks. In recent years, the IoT with blockchain technology has seen rapid growth, where smart contracts play an essential role in validating IoT data. However, these smart contracts can be vulnerable and degrade the performance of IoT applications. Hence, besides offering indispensable features to ease human lives, there is also a need to confront IoT environment security attacks, especially data integrity attacks. Toward this aim, this paper proposed an artificial intelligence-based system model with a dual objective. It first detects the malicious user trying to compromise the IoT environment using a binary classification problem. Further, blockchain technology is utilized to offer tamper-proof storage to store non-malicious IoT data. However, a malicious user can exploit the blockchain-based smart contract to deteriorate the performance IoT environment. For that, this paper utilizes deep learning algorithms to classify malicious and non-malicious smart contracts. The proposed system model offers an end-to-end security pipeline through which the IoT data are disseminated to the recipient. Lastly, the proposed system model is evaluated by considering different assessment measures that comprise the training accuracy, training loss, classification measures (precision, recall, and F1 score), and receiver operating characteristic (ROC) curve.

Funder

King Saud University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3