A Novel Method for Predicting Rockburst Intensity Based on an Improved Unascertained Measurement and an Improved Game Theory

Author:

Liu Zhe1ORCID,Chen Jianhong1,Zhao Yakun1,Yang Shan1ORCID

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Abstract

A rockburst is a dynamic disaster that may result in considerable damage to mines and pose a threat to personnel safety. Accurately predicting rockburst intensity is critical for ensuring mine safety and reducing economic losses. First, based on the primary parameters that impact rockburst occurrence, the uniaxial compressive strength (σc), shear–compression ratio (σθ/σc), compression–tension ratio (σc/σt), elastic deformation coefficient (Wet), and integrity coefficient of the rock (KV) were selected as the evaluation indicators. Second, an improved game theory weighting method was introduced to address the problem that the combination coefficients calculated using the traditional game theory weighting method may result in negative values. The combination of indicator weights obtained using the analytic hierarchy process, the entropy method, and the coefficient of variation method were also optimized using improved game theory. Third, to address the problem of subjectivity in the traditional unascertained measurement using the confidence identification criterion, the distance discrimination idea of the Minkowski distance was used to optimize the identification criteria of the attributes in an unascertained measurement and was applied to rockburst prediction, and the obtained results were compared with the original confidence identification criterion and the original distance discrimination. The results show that the improved game theory weighting method used in this model makes the weight distribution more reasonable and reliable, which can provide a feasible reference for the weight determination method of rockburst prediction. When the Minkowski distance formula was introduced into the unascertained measurement for distance discrimination, the same rockburst predictions were obtained when the distance parameter (p) was equal to 1, 2, 3, and 4. The improved model was used to predict and analyze 40 groups of rockburst data with an accuracy of 92.5% and could determine the rockburst intensity class intuitively, providing a new way to analyze the rockburst intensity class rationally and quickly.

Funder

National Natural Science Foundation Project of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference76 articles.

1. Evaluation method of rockburst: State-of-the-art literature review;Zhou;Tunn. Undergr. Space Technol.,2018

2. Dynamic Response and Energy Evolution of Sandstone Under Coupled Static–Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications;Zhou;Rock Mech. Rock Eng.,2020

3. Fractal evolution mechanism of rock fracture in undersea metal mining;Liu;J. Cent. South Univ.,2020

4. A new criterion of strain rockburst in consideration of the plastic zone of tunnel surrounding rock;Yang;Rock Mech. Rock Eng.,2022

5. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump;Qian;Rock Soil Mech.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3