Surface Mass Variations from GPS and GRACE/GFO: A Case Study in Southwest China

Author:

Zhong BoORCID,Li Xianpao,Chen Jianli,Li Qiong,Liu Tao

Abstract

Surface mass variations inferred from the Global Positioning System (GPS), and observed by the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GFO) complement each other in terms of spatial and temporal coverage. This paper presents an analysis of regional surface mass variations inverted from GPS vertical displacements under different density distributions of GPS stations, and compares the GPS-derived mass variations with GRACE/GFO inversion results in spatial and temporal domains. To this end, GPS vertical displacement data from a total of 85 permanent GPS stations of the Crustal Movement Observation Network of China (CMONOC), the latest GRACE/GFO RL06 spherical harmonic (SH) solutions and GRACE RL06 mascon solutions are used to investigate surface mass variations in four regions or basins, including the Yunnan Province (YNP), Min River Basin (MRB), Jialing River Basin (JLRB), and Wu River Basin (WRB) in Southwest China. Our results showed that the spatial distributions and seasonal characteristics of GPS-derived mass change time series agree well with those from GRACE/GFO observations, especially in regions with relatively dense distributions of GPS stations (e.g., in the YNP and MRB), but there are still obvious discrepancies between the GPS and GRACE/GFO results. Scale factor methods (both basin-scaled and pixel-scaled) were employed to reduce the amplitude discrepancies between GPS and GRACE/GFO results. The results also showed that the one-year gap between the GRACE and GFO missions can be bridged by scaled GPS-derived mass change time series in the four studied regions, especially in the YNP and MRB regions (with relatively dense distributions of GPS stations).

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3