Monsoon-Based Linear Regression Analysis for Filling Data Gaps in Gravity Recovery and Climate Experiment Satellite Observations

Author:

Mohasseb Hussein A.12ORCID,Shen Wenbin12ORCID,Jiao Jiashuang23ORCID

Affiliation:

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, China

2. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

3. Wuhan Gravitation and Solid Earth Tides National Observation and Research Station, Wuhan 430071, China

Abstract

Over the past two decades, the Gravity Recovery and Climate Experiment (GRACE) satellite mission and its successor, GRACE-follow on (GRACE-FO), have played a vital role in climate research. However, the absence of certain observations during and between these missions has presented a persistent challenge. Despite numerous studies attempting to address this issue with mathematical and statistical methods, no definitive optimal approach has been established. This study introduces a practical solution using Linear Regression Analysis (LRA) to overcome data gaps in both GRACE data types—mascon and spherical harmonic coefficients (SHCs). The proposed methodology is tailored to monsoon patterns and demonstrates efficacy in filling data gaps. To validate the approach, a global analysis was conducted across eight basins, monitoring changes in total water storage (TWS) using the technique. The results were compared with various geodetic products, including data from the Swarm mission, Institute of Geodesy and Geoinformation (IGG), Quantum Frontiers (QF), and Singular Spectrum Analysis (SSA) coefficients. Artificial data gaps were introduced within GRACE observations for further validation. This research highlights the effectiveness of the monsoon method in comparison to other gap-filling approaches, showing a strong similarity between gap-filling results and GRACE’s SHCs, with an absolute relative error approaching zero. In the mascon approach, the coefficient of determination (R2) exceeded 91% for all months. This study offers a readily usable gap-filling product—SHCs and smoothed gridded observations—with accurate error estimates. These resources are now accessible for a wide range of applications, providing a valuable tool for the scientific community.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3