Detailed Lacustrine Calving Iceberg Inventory from Very High Resolution Optical Imagery and Object-Based Image Analysis

Author:

Podgórski JulianORCID,Pętlicki MichałORCID

Abstract

In the field of iceberg and glacier calving studies, it is important to collect comprehensive datasets of populations of icebergs. Particularly, calving of lake-terminating glaciers has been understudied. The aim of this work is to present an object-based method of iceberg detection and to create an inventory of icebergs located in a proglacial lagoon of San Quintín glacier, Northern Patagonia Icefield, Chile. This dataset is created using high-resolution WorldView-2 imagery and a derived DEM. We use it to briefly discuss the iceberg size distribution and area–volume scaling. Segmentation of the multispectral imagery produced a map of objects, which were classified with use of Random Forest supervised classification algorithm. An intermediate classification product was corrected with a ruleset exploiting contextual information and a watershed algorithm that was used to divide multiple touching icebergs into separate objects. Common theoretical heavy-tail statistical distributions were tested as descriptors of iceberg area and volume distributions. Power law models were proposed for the area–volume relationship. The proposed method performed well over the open lake detecting correctly icebergs in all size bands except 5–15 m2 where many icebergs were missed. A section of the lagoon with ice melange was not reliably mapped due to uniformity of the area in the imagery and DEM. The precision of the DEM limited the scaling effort to icebergs taller than 1.7 m and larger than 99 m2, despite the inventory containing icebergs as small as 4 m2. The work demonstrates viability of object-based analysis for lacustrine iceberg detection and shows that the statistical properties of iceberg population at San Quintín glacier match those of populations produced by tidewater glaciers.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3