Multispectral Characteristics of Glacier Surface Facies (Chandra-Bhaga Basin, Himalaya, and Ny-Ålesund, Svalbard) through Investigations of Pixel and Object-Based Mapping Using Variable Processing Routines

Author:

Jawak Shridhar D.ORCID,Wankhede Sagar F.ORCID,Luis Alvarinho J.,Balakrishna KeshavaORCID

Abstract

Fundamental image processing methods, such as atmospheric corrections and pansharpening, influence the signal of the pixel. This morphs the spectral signature of target features causing a change in both the final spectra and the way different mapping methods may assign thematic classes. In the current study, we aim to identify the variations induced by popular image processing methods in the spectral reflectance and final thematic maps of facies. To this end, we have tested three different atmospheric corrections: (a) Quick Atmospheric Correction (QUAC), (b) Dark Object Subtraction (DOS), and (c) Fast Line-of-Sight Atmospheric Analysis of Hypercubes (FLAASH), and two pansharpening methods: (a) Hyperspherical Color Sharpening (HCS) and (b) Gram–Schmidt (GS). WorldView-2 and WorldView-3 satellite images over Chandra-Bhaga Basin, Himalaya, and Ny-Ålesund, Svalbard are tested via spectral subsets in traditional (BGRN1), unconventional (CYRN2), visible to near-infrared (VNIR), and the complete available spectrum (VNIR_SWIR). Thematic mapping was comparatively performed using 12 pixel-based (PBIA) algorithms and 3 object-based (GEOBIA) rule sets. Thus, we test the impact of varying image processing routines, effectiveness of specific spectral bands, utility of PBIA, and versatility of GEOBIA for mapping facies. Our findings suggest that the image processing routines exert an extreme impact on the end spectral reflectance. DOS delivers the most reliable performance (overall accuracy = 0.64) averaged across all processing schemes. GEOBIA delivers much higher accuracy when the QUAC correction is employed and if the image is enhanced by GS pansharpening (overall accuracy = 0.79). SWIR bands have not enhanced the classification results and VNIR band combination yields superior performance (overall accuracy = 0.59). The maximum likelihood classifier (PBIA) delivers consistent and reliable performance (overall accuracy = 0.61) across all processing schemes and can be used after DOS correction without pansharpening, as it deteriorates spectral information. GEOBIA appears to be robust against modulations in atmospheric corrections but is enhanced by pansharpening. When utilizing GEOBIA, we find that a combination of spatial and spectral object features (rule set 3) delivers the best performance (overall accuracy = 0.86), rather than relying only on spectral (rule set 1) or spatial (rule set 2) object features. The multiresolution segmentation parameters used here may be transferable to other very high resolution (VHR) VNIR mapping of facies as it yielded consistent objects across all processing schemes.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3