Temperature and Humidity Profile Retrieval from FY4-GIIRS Hyperspectral Data Using Artificial Neural Networks

Author:

Cai Xi,Bao Yansong,Petropoulos George P.ORCID,Lu Feng,Lu Qifeng,Zhu Liuhua,Wu Ying

Abstract

This study proposes a new technique for retrieving temperature and humidity profiles based on Artificial Neural Networks (ANNs) using data acquired from the GIIRS (Geosynchronous Interferometric Infrared Sounder) L1 and ERA-Interim (European Centre for Medium-Range Weather Forecasts Reanalysis). The approach is also compared against another method that uses simulated data from the radiative transfer model to construct the retrieval network. Furthermore, the two methods of network construction are evaluated in the North China Plain for July and August 2018, for which ground validated observations concurrent to the satellite data were available. In summary, the results showed that: (1) the ANN built with the GIIRS L1 and the EC data is superior to that built with the forward simulation and EC data in retrieval accuracy; (2) the retrieval accuracy for the troposphere exceeds that for the stratosphere; (3) the root mean square errors (RMSEs) of the relative humidity in the troposphere as retrieved by the two ANNs are 6.003% and 10.608%, respectively; (4) a relatively low correlation (R) between the simulated and observed radiance of the GIIRS is found, ranging between 720 and 736.875 cm−1, and the correlation between the simulated and observed radiance of the water vapor channels exceeds that between the temperature channels; (5) compared with Atmospheric Infrared Sounder’s (AIRS’) products, our retrieved temperature profiles exhibit preferable consistency and the humidity retrievals also show an acceptable accuracy. Our study offers important insights towards improving our ability to retrieve atmospheric temperature and humidity profiles from the most sophisticated Earth Observation instruments such as the GIIRS of the FY-4 satellite, which could assist in expanding the use of those products globally.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference53 articles.

1. 0–10 km temperature and humidity profiles retrieval from ground-based microwave radiometer;Bao;J. Trop. Meteorol.,2018

2. Warning Information in a Preconvection Environment from the Geostationary Advanced Infrared Sounding System—A Simulation Study Using the IHOP Case

3. The radiative heat transfer of planet earth;King,1958

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3