Periodic Relations between Terrestrial Vegetation and Climate Factors across the Globe

Author:

Liang BoyiORCID,Liu HongyanORCID,Chen XiaoqiuORCID,Zhu Xinrong,Cressey Elizabeth L.,Quine Timothy A.

Abstract

In this paper, cross-spectrum analysis was used to verify the agreement of periodicity between the global LAI (leaf area index) and climate factors. The results demonstrated that the LAI of deciduous forests and permanent wetlands have high agreement with temperature, rainfall and radiation over annual cycles. A low agreement between the LAI and seasonal climate variables was observed for some of the temperate and tropical vegetation types including shrublands and evergreen broadleaf forests, possibly due to the diversity of vegetation and human activities. Across all vegetation types, the LAI demonstrated a large time lag following variation in radiation (>1 month), whereas relatively short lag periods were observed between the LAI and annual temperature (around 2 weeks)/rainfall patterns (less than 10 days), suggesting that the impact of radiation on global vegetation growth is relatively slow, which is in accord with the results of previous studies. This work can provide a benchmark of the phenological drivers in global vegetation, from the perspective of periodicity, as well as helping to parameterize and refine the DGVMs (Dynamic Global Vegetation Models) for different vegetation types.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3