Automatic Events Recognition in Low SNR Microseismic Signals of Coal Mine Based on Wavelet Scattering Transform and SVM

Author:

Fan XinORCID,Cheng Jianyuan,Wang Yunhong,Li Sheng,Yan Bin,Zhang Qingqing

Abstract

The technology of microseismic monitoring, the first step of which is event recognition, provides an effective method for giving early warning of dynamic disasters in coal mines, especially mining water hazards, while signals with a low signal-to-noise ratio (SNR) usually cannot be recognized effectively by systematic methods. This paper proposes a wavelet scattering decomposition (WSD) transform and support vector machine (SVM) algorithm for discriminating events of microseismic signals with a low SNR. Firstly, a method of signal feature extraction based on WSD transform is presented by studying the matrix constructed by the scattering decomposition coefficients. Secondly, the microseismic events intelligent recognition model built by operating a WSD coefficients calculation for the acquired raw vibration signals, shaping a feature vector matrix of them, is outlined. Finally, a comparative analysis of the microseismic events and noise signals in the experiment verifies that the discriminative features of the two can accurately be expressed by using wavelet scattering coefficients. The artificial intelligence recognition model developed based on both SVM and WSD not only provides a fast method with a high classification accuracy rate, but it also fits the online feature extraction of microseismic monitoring signals. We establish that the proposed method improves the efficiency and the accuracy of microseismic signals processing for monitoring rock instability and seismicity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. Speeding up intelligent construction of coal mine and promoting high-quality development of coal industry;Wang;China Coal,2021

2. Review and prospect of China coal mine safety production in the past fifty years;Wang;Saf. Coal Mines,2020

3. Development stages of coalmine mining geological works in China;Wu;Coal Geol. China,2010

4. Major achievements and future research directions of the coal geology in China;Wang;Geol. China,2017

5. State of the art review on mechanism and prevention of coal bumps in China;Jiang;J. China Coal Soc.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3