Author:
Zhang Weidong,Zhao Qingyuan,Guan Xuhui,Wang Zizhen,Wang Zhiwen
Abstract
In weakly cemented reservoirs or coal-bed methane reservoirs, the conductivity of hydraulic fractures always declines after a period of production, which greatly influences gas production. In this paper, a comprehensive model considering fine-grained particle migration and proppant embedment is proposed to give a precise prediction for conductivity decline. Then, an experiment was conducted to simulate this process. A published experiment using coal fines was also tested and simulated. The results indicate that both fine-grained particle migration and proppant embedment have great negative effect on conductivity of fractures in weakly cemented sandstone and coal-bed methane reservoirs. The formulation we proposed matches the experimental data smoothly and can be widely used in the prediction of conductivity decline in weakly cemented sandstone and coal-bed methane reservoirs. In order to discuss the influencing factors of the filtration coefficient in the particle transport model, a porous media network model was established based on the theoretical model. The simulation results show that the filtration coefficient increases with the increase in particle size and/or throat size, and the filtration coefficient increases with the decrease in the fluid velocity. At the same time, it was found that the large larynx did not easily cause particle retention. Large size particles tend to cause particle retention.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献