Pore Structure and Permeability Variations during Gas Displacement in Unconsolidated Sandstone Reservoirs through CT Reconstruction Analysis

Author:

Zha Yuqiang1ORCID,Cao Bao1,Li Fengying1,Ye Qing1,Zhu Shaopeng1,Zhou Wei1,Xiong Runfu1

Affiliation:

1. CNOOC China Limited, Hainan Branch, Haikou 570311, China

Abstract

The continuous gas displacement in unconsolidated sandstone gas reservoirs will necessarily result in the pore structure and rock permeability variations, which cannot be neglected in the gas development process. However, the variations have not been comprehensively addressed yet, especially for the rock structure in pore scale. This work presented the quantitative results of pore structure in microscale and permeability variations during gas displacement in unconsolidated sandstone reservoirs through computed tomography (CT) reconstruction analysis. The results indicated that a more than 3% increase in porosity after gas displacement resulted from the enlargement of the pore and throat with a diameter of more than 20 μm and 3 μm, respectively, owing to the release and migration of clay and fine particles, in spite of the distribution frequency decline of both pore and throat with a small diameter. The pore connectivity would be enhanced by the increase of the connected pores as well as the enlargement of the pore and throat sizes. However, the pore-throat coordination number could only change with slight improvement. In terms of permeability and relative permeability changes with pore structure, the improvement of permeability after gas displacement was higher than that of porosity, and the continuous gas displacement would broaden gas-water flow region and lower irreducible water saturation and residual gas saturation, and then, the equal phase relative permeability point would shift to the right. These investigations will contribute to more accurate reserve evaluation and productivity prediction.

Funder

China National Offshore Oil Corporation

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3