Abstract
A deeper understanding of the physical nature of cycle-to-cycle variations (CCV) in internal combustion engines (ICE) as well as reliable simulation strategies to predict these CCV are indispensable for the development of modern highly efficient combustion engines. Since the combustion process in ICE strongly depends on the turbulent flow field in the cylinder and, for spark-ignited engines, especially around the spark plug, the prediction of CCV using computational fluid dynamics (CFD) is limited to the modeling of turbulent flows. One possible way to determine CCV is by applying large eddy simulation (LES), whose potential in this field has already been shown despite its drawback of requiring considerable computational time and resources. This paper presents a novel strategy based on unsteady Reynolds-averaged Navier–Stokes (uRANS) CFD in combination with variational autoencoders (VAEs). A VAE is trained with flow field data from presimulated cycles at a specific crank angle. Then, the VAE can be used to generate artificial flow fields that serve to initialize new CFD simulations of the combustion process. With this novel approach, a high number of individual cycles can be simulated in a fraction of the time that LES needs for the same amount of cycles. Since the VAE is trained on data from presimulated cycles, the physical information of the cycles is transferred to the generated artificial cycles.
Funder
Austrian Research Promotion Agency
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献