Abstract
Rolling-element bearings play vital roles in the dynamic vibration performance of the whole machinery. Hence, accurate modeling and assessment of the rolling-element bearing are beneficial for the well understanding of the vibration response of rolling-element bearing. However, cage slip is usually ignored in the traditional rolling-element bearing modeling methods, which has a direct influence on the rotating speed and friction force of the rolling elements. To settle the modeling problem of rolling-element bearing with cage slip, in this study, a nonlinear dynamic model with multiple degrees of freedom of the roller bearing is established. The cage slip, the motion of each roller, nonlinear contact, damping, and friction are taken into consideration. With the proposed method, a nonlinear traction model is presented to describe the friction forces induced by cage slip. Furthermore, both the friction force acting on rolling elements and the effects of cage slip on the vibration response are investigated based on the established model. Some comparisons between the proposed modeling method with cage slip and the classical method without cage slip are made. The results show that the friction force applied to the balls increases with the cage slip, friction coefficient, rotational speed, and radial load. A slight cage slip could be beneficial for reducing the vibration energy of rolling-element bearing; however, it will result in more friction loss and impact components.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献