Fault Diagnosis of Intershaft Bearings Using Fusion Information Exergy Distance Method

Author:

Tian Jing1ORCID,Ai Yanting2,Fei Chengwei3ORCID,Zhao Ming1,Zhang Fengling2,Wang Zhi2

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China

2. Liaoning Key Laboratory of Advanced Test Technology for Aeronautical Propulsion System, Shenyang Aerospace University, Shenyang 110136, China

3. School of Transportation Science and Engineering, Beihang University, Beijing 100191, China

Abstract

For the fault diagnosis of intershaft bearings, the fusion information exergy distance method (FIEDM) is proposed by fusing four information exergies, such as singular spectrum exergy, power spectrum exergy, wavelet energy spectrum exergy, and wavelet space spectrum exergy, which are extracted from acoustic emission (AE) signals under multiple rotational speeds and multimeasuring points. The theory of FIEDM is investigated based on four information exergy distances under multirotational speeds. As for rolling bearings, four faults and one normal condition are simulated on a birotor test rig to collect the AE signals, in which the four faults are inner ring fault, outer ring fault, rolling element fault, and inner race-rolling element coupling fault. The faults of the intershaft bearings are analyzed and diagnosed by using the FIEDM. From the investigation, it is demonstrated that the faults of the intershaft bearings are accurately diagnosed and identified, and the FIEDM is effective for the analysis and diagnosis of intershaft bearing faults. Furthermore, the fault diagnosis precision of intershaft bearings becomes higher with increasing rotational speed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3