Abstract
This work deals with controlling the solar radiation reception rate (SRRR) (ratio of the incident solar radiation on tilted panel to the global incident solar radiation). Controlling the SRRR will permit the amount of the received solar energy on solar panels to be adjusted. This SRRR control is very useful for several technological applications such as solar thermal and photovoltaic technologies in extremely sunny regions around the world, such as the case of Makkah, Saudi Arabia. Thus, the sustainability of the cities and villages, located in such regions, is promoted. A novel design proposing a poly-tilted segmented panel (PTSP) is proposed as an original techno-logical solution enabling the control of the SRRR. Design technical details are clearly explained. The proposed design presents a cheap, simple and effective alternative to conventional sun tracking systems. The SRRR on the proposed PTSP is mathematically modeled. The influence of the combinations “number of segment/tilt angles” on the SRRR is assessed for the most significant days in the year: equinox, summer solstice and winter solstice. A specific “document-aided design”, showing the SRRR level reached by each specific combination “num-ber of segment/tilt angles”, is provided. Based on these documents, the adequate combination “number of segment/tilt angles” is easily determined by knowing the desired SRRR level. The SRRR level is determined based on the global incident solar radiation and the desired level of the incident so-lar radiation on the tilted panel. Results are properly presented, discussed and interpreted for each segment/tilt angles combination.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献