Optimal Management for EV Charging Stations: A Win–Win Strategy for Different Stakeholders Using Constrained Deep Q-Learning

Author:

Paraskevas Athanasios,Aletras Dimitrios,Chrysopoulos Antonios,Marinopoulos AntoniosORCID,Doukas Dimitrios I.ORCID

Abstract

Given the additional awareness of the increasing energy demand and gas emissions’ effects, the decarbonization of the transportation sector is of great significance. In particular, the adoption of electric vehicles (EVs) seems a promising option, under the condition that public charging infrastructure is available. However, devising a pricing and scheduling strategy for public EV charging stations is a non-trivial albeit important task. The reason is that a sub-optimal decision could lead to high waiting times or extreme changes to the power load profile. In addition, in the context of the problem of optimal pricing and scheduling for EV charging stations, the interests of different stakeholders ought to be taken into account (such as those of the station owner and the EV owners). This work proposes a deep reinforcement learning-based (DRL) agent that can optimize pricing and charging control in a public EV charging station under a real-time varying electricity price. The primary goal is to maximize the station’s profits while simultaneously ensuring that the customers’ charging demands are also satisfied. Moreover, the DRL approach is data-driven; it can operate under uncertainties without requiring explicit models of the environment. Variants of scheduling and DRL training algorithms from the literature are also proposed to ensure that both the conflicting objectives are achieved. Experimental results validate the effectiveness of the proposed approach.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3