Optimizing Electric Vehicle Charging Recommendation in Smart Cities: A Multi-Agent Reinforcement Learning Approach

Author:

Suanpang Pannee1ORCID,Jamjuntr Pitchaya2

Affiliation:

1. Department of Information Technology, Suan Dusit University, Bangkok 10300, Thailand

2. King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

Abstract

As global awareness for preserving natural energy sustainability rises, electric vehicles (EVs) are increasingly becoming a preferred choice for transportation because of their ability to emit zero emissions, conserve energy, and reduce pollution, especially in smart cities with sustainable development. Nonetheless, the lack of adequate EV charging infrastructure remains a significant problem that has resulted in varying charging demands at different locations and times, particularly in developing countries. As a consequence, this inadequacy has posed a challenge for EV drivers, particularly those in smart cities, as they face difficulty in locating suitable charging stations. Nevertheless, the recent development of deep reinforcement learning is a promising technology that has the potential to improve the charging experience in several ways over the long term. This paper proposes a novel approach for recommending EV charging stations using multi-agent reinforcement learning (MARL) algorithms by comparing several popular algorithms, including the deep deterministic policy gradient, deep Q-network, multi-agent DDPG (MADDPG), Real, and Random, in optimizing the placement and allocation of the EV charging stations. The results demonstrated that MADDPG outperformed other algorithms in terms of the Mean Charge Waiting Time, CFT, and Total Saving Fee, thus indicating its superiority in addressing the EV charging station problem in a multi-agent setting. The collaborative and communicative nature of the MADDPG algorithm played a key role in achieving these results. Hence, this approach could provide a better user experience, increase the adoption of EVs, and be extended to other transportation-related problems. Overall, this study highlighted the potential of MARL as a powerful approach for solving complex optimization problems in transportation and beyond. This would also contribute to the development of more efficient and sustainable transportation systems in smart cities for sustainable development.

Funder

Suan Dusit University under the Ministry of Higher Education, Science, Research and Innovation, Thailand

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3