A Temperature Control Method of Lysozyme Fermentation Based on LRWOA-LSTM-PID

Author:

Ding Chenhua12,Li Xungen12,Zhou Hanlin1,Yu Jianming1,Du Juling3,Zhao Shixiang12ORCID

Affiliation:

1. College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China

2. Pujiang Microelectronics and Intelligent Manufacturing Research Institute, Hangzhou Dianzi University, Jinhua 322200, China

3. College of Economics and Management, China Jiliang University, Hangzhou 310018, China

Abstract

In order to overcome the difficulty of parameter tuning caused by the large lag and time-varying nonlinearity of the tank for lysozyme fermentation, a temperature control method based on LRWOA-LSTM-PID is proposed in this paper. Firstly, according to the intrinsic mechanism of the fermenter, a temperature mechanism model based on a dynamic equation is designed, which can better reflect the temperature changes in the fermenter. Secondly, a Proportional Integral Derivative (PID) parameter tuning method based on a Long-Short Term Memory Network (LSTM) is proposed, which takes advantage of the ability of LSTM to learn time sequence information and obtains the variation trend between error sequences under continuous time sampling, thereby adjusting network weights more reasonably and accelerating PID parameter tuning. Finally, a Whale Optimization Algorithm (WOA) based on the Lévy flight and random walk strategy (LRWOA) is proposed for the initialization of LSTM parameters; this algorithm has excellent optimization capabilities and overcomes the problem of LSTM falling into local optimal solutions prematurely during parameter randomization. The results show that the method proposed in this paper can achieve rapid tuning of PID parameters, thereby improving the convergence speed of the system and reducing system overshoot.

Funder

Natural Science Foundation of Zhejiang Province in China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3