Novel Deep-Learning Modulation Recognition Algorithm Using 2D Histograms over Wireless Communications Channels

Author:

Marey AmrORCID,Marey MohamedORCID,Mostafa HalaORCID

Abstract

Modulation recognition (MR) has become an essential topic in today’s wireless communications systems. Recently, convolutional neural networks (CNNs) have been employed as a potent tool for MR because of their ability to minimize the feature’s susceptibility to its surroundings and reduce the need for human feature extraction and evaluation. In particular, these investigations rely on the unrealistic assumption that the channel coefficient is typically one. This motivates us to overcome the previous constraint by providing a novel MR suited to fading wireless channels. This paper proposes a novel MR algorithm that is capable of recognizing a broad variety of modulation types, including M-ary QAM and M-ary PSK, without enforcing any restrictions on the modulation size, M. The analysis has shown that each modulation choice has a distinct two-dimensional in-phase quadrature histogram. This property is beneficially utilized to design a convolutional neural-network-based MR algorithm. When compared to the existing techniques, Monte Carlo simulations demonstrated the success of the proposed design.

Funder

Princess Nourah bint Abdulrahman University

Prince Sultan University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3