Abstract
In this paper, we present a wound-dressing-based antenna fabricated via screen-printed and inkjet-printed technologies. To inkjet print a conductive film on wound dressing, it must be screen-printed, UV-curable-pasted, and hard-baked to provide appropriate surface wettability. Two passes were UV-curable-pasted and hard-baked at 100 °C for 2 h on the wound dressing to obtain 65° WCA for silver printing. The silver film was printed onto the wound dressing at room-tempature with 23 μm droplet spacing for three passes, then sintered at 120 °C for 1 h. By optimizing the inkjet printing conditions by modifying the surface morphologies and electrical properties, three-pass printed silver films with 3.15 μm thickness and 1.05 × 107 S/m conductivity were obtained. The insertion losses at the resonant frequency (17 and 8.85 GHz) were −2.9 and −2.1 dB for the 5000 and 10,000 μm microstrip transmission lines, respectively. The material properties of wound dressing with the relative permittivity and loss-tangent of 3.15–3.25 and 0.04–0.05, respectively, were determined by two transmission line methods and used for antenna design. A quasi-Yagi antenna was designed and implemented on the wound-dressing with an antenna bandwidth of 3.2–4.6 GHz, maximal gain of 0.67 dBi, and 42% radiation efficiency. The bending effects parallel and perpendicular to the dipole direction of three fixtures were also examined. The gain decreased from 0.67 to −1.22 dBi and −0.44 dBi for a flat to curvature radius of 5 cm fixture after parallel and perpendicular bending, respectively. Although the maximal gain was reduced with the bending radius, the directivity of the radiation pattern remained unchanged. The feasibility of a wound-dressing antenna demonstrates that inkjet-printed technology enables fast fabrication with low cost and environmental friendliness. Additionally, inkjet-printed technology can be combined with sensing technology to realize remote medical monitoring, such as with smart bandages, for assessment of chronic wound status or basic physical conditions.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献