Abstract
The wildfire prediction model is crucial for accurate rescue and rapid evacuation. Existing models mainly adopt regular grids or fire perimeters to describe the wildfire landscape. However, these models have difficulty in explicitly demonstrating the local spread details, especially in a complex landscape. In this paper, we propose a wildfire spread model with an irregular graph network (IGN). This model implemented an IGN generation algorithm to characterize the wildland landscape with a variable scale, adaptively encoding complex regions with dense nodes and simple regions with sparse nodes. Then, a deep learning-based spread model is designed to calculate the spread duration of each graph edge under variable environmental conditions. Comparative experiments between the IGN model and widely used fire simulation models were conducted on a real wildfire in Getty, California, USA. The results show that the IGN model can accurately and explicitly describe the spatiotemporal characteristics of the wildfire spread in a novel graph form while maintaining competitive simulation refinement and computational efficiency (Jaccard: 0.587, SM: 0.740, OA: 0.800).
Funder
The Disciplines Distribution Project of Shenzhen, China
The Key Field Research and Development Program of Guangdong, China
Subject
Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献