Transformer-Based Maneuvering Target Tracking

Author:

Zhao GuanghuiORCID,Wang Zelin,Huang YixiongORCID,Zhang Huirong,Ma Xiaojing

Abstract

When tracking maneuvering targets, recurrent neural networks (RNNs), especially long short-term memory (LSTM) networks, are widely applied to sequentially capture the motion states of targets from observations. However, LSTMs can only extract features of trajectories stepwise; thus, their modeling of maneuvering motion lacks globality. Meanwhile, trajectory datasets are often generated within a large, but fixed distance range. Therefore, the uncertainty of the initial position of targets increases the complexity of network training, and the fixed distance range reduces the generalization of the network to trajectories outside the dataset. In this study, we propose a transformer-based network (TBN) that consists of an encoder part (transformer layers) and a decoder part (one-dimensional convolutional layers), to track maneuvering targets. Assisted by the attention mechanism of the transformer network, the TBN can capture the long short-term dependencies of target states from a global perspective. Moreover, we propose a center–max normalization to reduce the complexity of TBN training and improve its generalization. The experimental results show that our proposed methods outperform the LSTM-based tracking network.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference23 articles.

1. The interacting multiple model algorithm for systems with Markovian switching coefficients

2. MAP estimation of target manoeuvre sequence with the expectation-maximization algorithm

3. Novel nonlinear filtering & prediction method for maneuvering target tracking;Chen;IEEE Trans. Aerosp. Electron. Syst.,2009

4. Algorithm of maneuvering target tracking for video based on UKF and IMM;Ning;Proceedings of the IEEE Conference Anthology,2013

5. Improved interactive multiple model filter for maneuvering target tracking;Li;Proceedings of the Proceedings of the 33rd IEEE Chinese Control Conference,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3