Adaptive IMM-UKF for Airborne Tracking

Author:

Arroyo Cebeira Alvaro1ORCID,Asensio Vicente Mariano1ORCID

Affiliation:

1. School of Aerospace Engineering, Universidad Politécnica de Madrid, Pl del Cardenal Cisneros No 3, 28040 Madrid, Spain

Abstract

In this paper, we propose a nonlinear tracking solution for maneuvering aerial targets based on an adaptive interacting multiple model (IMM) framework and unscented Kalman filters (UKFs), termed as AIMM-UKF. The purpose is to obtain more accurate estimates, better consistency of the tracker, and more robust prediction during sensor outages. The AIMM-UKF framework provides quick switching between two UKFs by adapting the transition probabilities between modes based on a distance function. Two modes are implemented: a uniform motion model and a maneuvering model. The experimental validation is performed with Monte Carlo simulations of three scenarios with ACAS Xa tracking logic as a benchmark, which is the next generation of airborne collision avoidance systems. The two algorithms are compared using hypothesis testing of the root mean square errors. In addition, we determine the normalized estimation error squared (NEES), a new proposed noise reduction factor to compare the estimation errors against the measurement errors, and an estimated maximum error of the tracker during sensor dropouts. The experimental results illustrate the superior performance of the proposed solution with respect to the tracking accuracy, consistency, and expected maximum error.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference38 articles.

1. Survey of Maneuvering Target Tracking. Part I. Dynamic Models;Li;IEEE Trans. Aerosp. Electron. Syst.,2003

2. Mixed Coordinate Tracking of Generalized Maneuvering Targets using acceleration and Jerk Models;Mahapatra;IEEE Trans. Aerosp. Electron. Syst.,2000

3. A Survey of Maneuvering Target Tracking: Decision-Based Methods;Li;Proc. SPIE Conf. Signal Data Process. Small Targets,2002

4. Survey of Maneuvering Target Tracking. Part V. Multiple-Model Methods;Li;IEEE Trans. Aerosp. Electron. Syst.,2005

5. Multiple Model Rao-Blackwellized Particle Filter for Manoeuvring Target Tracking;Li;Def. Sci. J.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3