The Gray-Box Based Modeling Approach Integrating Both Mechanism-Model and Data-Model: The Case of Atmospheric Contaminant Dispersion

Author:

Chen BinORCID,Wang Yiduo,Wang Rongxiao,Zhu Zhengqiu,Ma Liang,Qiu Xiaogang,Dai Weihui

Abstract

With the profound understanding of the world, modeling and simulation has been used to solve the problems of complex systems. Generally, mechanism-models are often used to model the engineering systems following the Newton laws, and this kind of modeling approach is called white-box modeling; however, when the internal structure and characteristics of some systems are hard to understand, the black-box modeling based on statistic and data-modeling is often used. For most complex real systems, a single modeling approach can hardly describe the target system accurately. In this paper, we firstly discuss and compare the white-box and black-box modeling approaches. Then, to mitigate the limitations of these two modeling methods in mechanism-partially-observed systems, the gray-box based modeling approach integrating both a mechanism model and data model is proposed. In order to explain the idea of gray-box based modeling, the atmosphere dispersion modeling is studied in practical cases from two symmetric aspects. Specifically, the framework of data assimilation is used to illustrate the modeling from white-box to gray-box, while the Gauss features based Support Vector Regression (SVR) models are used to illustrate the modeling from black-box to gray-box. To verify the feasibility of the gray-box modeling method, we conducted both simulation experiments and real dataset symmetry experiments. The experiment results show the enhanced performance of the gray-box based modeling approach. In the end, we expect that this gray-box based modeling approach will be an alternative modeling approach for different existing systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference48 articles.

1. An Intelligent ACP based Experimental Approach;Chen;J. Syst. Simul.,2017

2. System Simulation Techniques;Kedi,1998

3. Electronic System-Level Synthesis Methodologies

4. Artificial Societies: A Concept for Basic Research on the Societal Impacts of Information Technology;Builder,1991

5. Development of the Public Safety System and a Security-Guaranteed Society;Yi;Strateg. Study Chin. Acad. Eng.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3