Abstract
In this paper, we consider the eigenproblems for Latin squares in a bipartite min-max-plus system. The focus is upon developing a new algorithm to compute the eigenvalue and eigenvectors (trivial and non-trivial) for Latin squares in a bipartite min-max-plus system. We illustrate the algorithm using some examples. The proposed algorithm is implemented in MATLAB, using max-plus algebra toolbox. Computationally speaking, our algorithm has a clear advantage over the power algorithm presented by Subiono and van der Woude. Because our algorithm takes 0 . 088783 sec to solve the eigenvalue problem for Latin square presented in Example 2, while the compared one takes 1 . 718662 sec for the same problem. Furthermore, a time complexity comparison is presented, which reveals that the proposed algorithm is less time consuming when compared with some of the existing algorithms.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献