Trivial and Nontrivial Eigenvectors for Latin Squares in Max-Plus Algebra

Author:

Abbas Fazal,Umer MubasherORCID,Hayat UmarORCID,Ullah IkramORCID

Abstract

A square array whose all rows and columns are different permutations of the same length over the same symbol set is known as a Latin square. A Latin square may or may not be symmetric. For classification and enumeration purposes, symmetric, non-symmetric, conjugate symmetric, and totally symmetric Latin squares play vital roles. This article discusses the Eigenproblem of non-symmetric Latin squares in well known max-plus algebra. By defining a certain vector corresponding to each cycle of a permutation of the Latin square, we characterize and find the Eigenvalue as well as the possible Eigenvectors.

Funder

Stetson University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. Tropical nevanlinna theory and ultra-discrete equations;Halburd;Int. Math. Res. Not.,2009

2. Lecture notes in economics and mathematical systems;Cuninghame-Green,1979

3. On the ultimate behavior of the sequence of consecutive powers of a matrix in the max-plus algebra

4. Methods and applications of (max,+) linear algebra;Gaubert,1997

5. On Max-Plus Algebra and Its Application on Image Steganography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3