Affiliation:
1. School of Electrical Engineering, Dalian University of Technology, Dalian 116000, China
2. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211000, China
3. State Grid Electric Power Research Institute Wuhan Nari Co., Ltd., Wuhan 430074, China
Abstract
In order to reveal the migration and evolution of gas molecules in the actual oil–paper insulation composite system of transformer from the molecular level, the diffusion behavior of seven gas molecules (H2, CO, CO2, CH4, C2H2, C2H4, C2H6) generated during the operation and aging of oil-immersed transformers in the oil–paper composite insulation system is studied by molecular dynamics. Firstly, based on the molecular dynamics software, the model of the oil–paper composite insulation system and the gas molecule model is constructed. In order to compare and analyze the diffusion properties of gas molecules in a single medium, a single model of insulating oil and cellulose is also constructed. Then, the diffusion coefficients of gas molecules in the insulating oil, cellulose, and oil–paper insulating composite system are simulated and calculated. And the differences in the diffusion properties of gas molecules in the three insulating mediums are discussed. Finally, the microscopic mechanism of diffusion of different gas molecules in the three mediums is analyzed. The simulation results show that among the three mediums, the diffusion coefficient of H2 is the largest, while the diffusion coefficients of the other gas molecules are not very different. The diffusion coefficients of the seven gas molecules are the smallest in the oil-immersed paper composite insulation system, followed by cellulose, while the diffusion coefficients are the largest in mineral oil. It indicates that the diffusion of gas molecules is inhibited in oil–paper insulation systems where the insulating paper is completely immersed in oil. This is mainly due to the fact that the insulating oil completely penetrates into the paper, filling the pores and voids between the fibers, resulting in a reduction in the transition vacancies of the intermediate gas molecules, which hinders the diffusion of the gas molecules.
Funder
Natural Science Foundation
State Grid Corporation of China’s Science and Technology