Growth and Fatty Acid Composition of Black Soldier Fly Hermetia illucens (Diptera: Stratiomyidae) Larvae Are Influenced by Dietary Fat Sources and Levels

Author:

Li Xiangce,Dong Yewei,Sun Qiuxuan,Tan XiaohongORCID,You CuihongORCID,Huang Yanhua,Zhou Meng

Abstract

A 16-day rearing trial was performed to investigate the influence of two supplemental levels (5% and 10%) of six dietary fat sources (linseed oil, peanut oil, coconut oil, soybean oil, lard oil and fish oil) on the growth, development and nutrient composition of black solider fly larvae. Our results demonstrated that the pre-pupa rate of larvae was linearly influenced by dietary C18:0, C18:3n-3 and C18:2n-6 content (pre-pupa rate = 0.927 × C18:0 content + 0.301 × C18:3n-3 content-0.258 × C18:2n-6 content p < 0.001)), while final body weight was linearly influenced by that of C16:0 (final body weight = 0.758 × C16:0 content, p = 0.004). Larval nutrient composition was significantly affected by dietary fat sources and levels, with crude protein, fat and ash content of larvae varying between 52.0 and 57.5, 15.0 and 23.8, and 5.6 and 7.2% dry matter. A higher level of C12:0 (17.4–28.5%), C14:0 (3.9–8.0%) and C16:1n-9 (1.3–4.3%) was determined in larvae fed the diets containing little of them. In comparison, C16:0, C18:1n-9, C18:2n-6 and C18:3n-3 proportions in larvae were linearly related with those in diets, with the slope of the linear equations varying from 0.39 to 0.60. It can be concluded that sufficient C16:0, C18:0 and C18:3n-3 supply is beneficial for larvae growth. Larvae could produce and retain C12:0, C14:0, and C16:1n-9 in vivo, but C16:0, C18:1n-9, C18:2n-6 and C18:3n-3 could only be partly incorporated from diets and the process may be enhanced by a higher amount of dietary fat. Based on the above observation, an accurately calculated amount of black soldier fly larvae could be formulated into aquafeed as the main source of saturated fatty acids and partial source of mono-unsaturated and poly-unsaturated fatty acids to save fish oil.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3