Compressive Sensing-Based SAR Image Reconstruction from Sparse Radar Sensor Data Acquisition in Automotive FMCW Radar System

Author:

Lee SeongwookORCID,Jung YunhoORCID,Lee MyeongjinORCID,Lee WookyungORCID

Abstract

In this paper, we propose a method for reconstructing synthetic aperture radar (SAR) images by applying a compressive sensing (CS) technique to sparsely acquired radar sensor data. In general, SAR image reconstruction algorithms require radar sensor data acquired at regular spatial intervals. However, when the speed of the radar-equipped platform is not constant, it is difficult to consistently perform regular data acquisitions. Therefore, we used the CS-based signal recovery method to efficiently reconstruct SAR images even when regular data acquisition was not performed. In the proposed method, we used the l1-norm minimization to overcome the non-uniform data acquisition problem, which replaced the Fourier transform and inverse Fourier transform in the conventional SAR image reconstruction method. In addition, to reduce the phase distortion of the recovered signal, the proposed method was applied to each of the in-phase and quadrature components of the acquired radar sensor data. To evaluate the performance of the proposed method, we conducted experiments using an automotive frequency-modulated continuous wave radar sensor. Then, the quality of the SAR image reconstructed with data acquired at regular intervals was compared with the quality of images reconstructed with data acquired at non-uniform intervals. Using the proposed method, even if only 70% of the regularly acquired radar sensor data was used, a SAR image having a correlation of 0.83 could be reconstructed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. An Introduction to Automotive LIDAR, Texas Instrumentshttps://www.ti.com/lit/wp/slyy150a/slyy150a.pdf

2. Target Classification Using the Deep Convolutional Networks for SAR Images

3. Radar remote monitoring of vital signs

4. A tutorial on synthetic aperture radar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3