Simulation and Driving Factor Analysis of Satellite-Observed Terrestrial Water Storage Anomaly in the Pearl River Basin Using Deep Learning

Author:

Huang Haijun1,Feng Guanbin2,Cao Yeer3,Feng Guanning4,Dai Zhikai1,Tian Peizhi1ORCID,Wei Juncheng1,Cai Xitian1

Affiliation:

1. School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China

2. School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China

3. School of Atmospheric Science, Sun Yat-Sen University, Guangzhou 510275, China

4. School of Software Engineering, Sun Yat-Sen University, Guangzhou 510275, China

Abstract

Accurate estimation of terrestrial water storage (TWS) and understanding its driving factors are crucial for effective hydrological assessment and water resource management. The launches of the Gravity Recovery and Climate Experiment (GRACE) satellites and their successor, GRACE Follow-On (GRACE-FO), combined with deep learning algorithms, have opened new avenues for such investigations. In this study, we employed a long short-term memory (LSTM) neural network model to simulate TWS anomaly (TWSA) in the Pearl River Basin (PRB) from 2003 to 2020, using precipitation, temperature, runoff, evapotranspiration, and leaf area index (LAI) data. The performance of the LSTM model was rigorously evaluated, achieving a high average correlation coefficient (r) of 0.967 and an average Nash–Sutcliffe efficiency (NSE) coefficient of 0.912 on the testing set. To unravel the relative importance of each driving factor and assess the impact of different lead times, we employed the SHapley Additive exPlanations (SHAP) method. Our results revealed that precipitation exerted the most significant influence on TWSA in the PRB, with a one-month lead time exhibiting the greatest impact. Evapotranspiration, runoff, temperature, and LAI also played important roles, with interactive effects among these factors. Moreover, we observed an accumulation effect of precipitation and evapotranspiration on TWSA, particularly with shorter lead times. Overall, the SHAP method provides an alternative approach for the quantitative analysis of natural driving factors at the basin scale, shedding light on the natural dominant influences on TWSA in the PRB. The combination of satellite observations and deep learning techniques holds promise for advancing our understanding of TWS dynamics and enhancing water resource management strategies.

Funder

Innovation and Entrepreneurship Training Program for College Students of Sun Yat-sen University

Natural Science Foundation of Guangdong Province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3