Enhancing Flood Simulation in Data-Limited Glacial River Basins through Hybrid Modeling and Multi-Source Remote Sensing Data

Author:

Ren Weiwei1ORCID,Li Xin1ORCID,Zheng Donghai1ORCID,Zeng Ruijie2,Su Jianbin1ORCID,Mu Tinghua3,Wang Yingzheng4

Affiliation:

1. National Tibetan Plateau Data Center (TPDC), State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

2. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA

3. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

4. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

Abstract

Due to the scarcity of observational data and the intricate precipitation–runoff relationship, individually applying physically based hydrological models and machine learning (ML) techniques presents challenges in accurately predicting floods within data-scarce glacial river basins. To address this challenge, this study introduces an innovative hybrid model that synergistically harnesses the strengths of multi-source remote sensing data, a physically based hydrological model (i.e., Spatial Processes in Hydrology (SPHY)), and ML techniques. This novel approach employs MODIS snow cover data and remote sensing-derived glacier mass balance data to calibrate the SPHY model. The SPHY model primarily generates baseflow, rain runoff, snowmelt runoff, and glacier melt runoff. These outputs are then utilized as extra inputs for the ML models, which consist of Random Forest (RF), Gradient Boosting (GDBT), Long Short-Term Memory (LSTM), Deep Neural Network (DNN), Support Vector Machine (SVM) and Transformer (TF). These ML models reconstruct the intricate relationship between inputs and streamflow. The performance of these six hybrid models and SPHY model is comprehensively explored in the Manas River basin in Central Asia. The findings underscore that the SPHY-RF model performs better in simulating and predicting daily streamflow and flood events than the SPHY model and the other five hybrid models. Compared to the SPHY model, SPHY-RF significantly reduces RMSE (55.6%) and PBIAS (62.5%) for streamflow, as well as reduces RMSE (65.8%) and PBIAS (73.51%) for floods. By utilizing bootstrap sampling, the 95% uncertainty interval for SPHY-RF is established, effectively covering 87.65% of flood events. Significantly, the SPHY-RF model substantially improves the simulation of streamflow and flood events that the SPHY model struggles to capture, indicating its potential to enhance the accuracy of flood prediction within data-scarce glacial river basins. This study offers a framework for robust flood simulation and forecasting within glacial river basins, offering opportunities to explore extreme hydrological events in a warming climate.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3