Pavement Temperature Forecasts Based on Model Output Statistics: Experiments for Highways in Jiangsu, China

Author:

Zhu Shoupeng1ORCID,Lyu Yang2,Wang Hongbin1,Zhou Linyi1,Zhu Chengying1,Dong Fu2,Fan Yi2,Wu Hong1,Zhang Ling2,Liu Duanyang1ORCID,Yang Ting3,Kong Dexuan24

Affiliation:

1. Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210041, China

2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China

3. Henan Climate Center, Zhengzhou 450003, China

4. Meteorological Bureau of Qian Xinan Buyei and Miao Autonomous Prefecture, Xingyi 562400, China

Abstract

Forecasts on transportation meteorology, such as pavement temperature, are becoming increasingly important in the face of global warming and frequent disruptions from extreme weather and climate events. In this study, we propose a pavement temperature forecast model based on stepwise regression—model output statistics (SRMOS) at the short-term timescale, using highways in Jiangsu, China, as examples. Experiments demonstrate that the SRMOS model effectively calibrates against the benchmark of the linear regression model based on surface air temperature (LRT). The SRMOS model shows a reduction in mean absolute errors by 0.7–1.6 °C, with larger magnitudes observed for larger biases in the LRT forecasts. Both forecasts exhibit higher accuracy in predicting minimum nighttime temperatures compared to maximum daytime temperatures. Additionally, it overall shows increasing biases from the north to the south, and the SRMOS superiority is greater over the south with larger initial LRT biases. Predictor importance analysis indicates that temperature, moisture, and larger-scale background are basically the key predictors in the SRMOS model for pavement temperature forecasts, of which the air temperature is the most crucial factor in the model’s construction. Although larger-scale circulation backgrounds are generally characterized by relatively low importance, their significance increases with longer lead times. The presented results demonstrate the considerable skill of the SRMOS model in predicting pavement temperatures, highlighting its potential in disaster prevention for extreme transportation meteorology events.

Funder

Basic Research Fund of CAMS

Joint Fund for Innovation and Development of the Natural Science Foundation of Hubei Province

National Natural Science Foundation of China

Innovation and Development Project of China Meteorological Administration

Provincial and Municipal Joint Fund Project of Guizhou Province Meteorological Bureau

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3