Projection of Future Extreme Precipitation in China Based on the CMIP6 from a Machine Learning Perspective

Author:

Yan YilinORCID,Wang HaoORCID,Li GuopingORCID,Xia Jin,Ge Fei,Zeng QiangyuORCID,Ren Xinyue,Tan Linyin

Abstract

In recent years, China has suffered from frequent extreme precipitation events, and predicting their future trends has become an essential part of the current research on this issue. Because of the inevitable uncertainties associated with individual models for climate prediction, this study uses a machine learning approach to integrate and fit multiple models. The results show that the use of several evaluation metrics provides better results than the traditional ensemble median method. The correlation coefficients with the actual observations were found to improve from about 0.8 to 0.9, while the correlation coefficients of the precipitation amount (PRCPTOT), very heavy precipitation days (R20mm), and extreme precipitation intensity (SDII95) reached 0.95. Based on this, the precipitation simulations of moderate forced scenario for sharing socio-economic path (SSP2-4.5) from 27 coupled models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) were used to explore potential changes in future extreme precipitation events in China and to calculate the distribution and trends of the PRCPTOT, extreme precipitation amount (R95pTOT), maximum consecutive 5-day precipitation (Rx5day), precipitation intensity (SDII), SDII95, and R20mm for the early 21st century (2023–2050), mid-21st century (2051–2075), and late 21st century (2076–2100), respectively. The results showed that the most significant increase in extreme precipitation indices is expected to occur by the end of the century, with the R95pTOT, Rx5day, and SDII95 increasing by 13.73%, 9.43%, and 9.34%, respectively, from the base period. The remaining three precipitation indexes, the PRCPTOT, SDII, and R20mm, also showed increases of 8.77%, 6.84%, and 4.02%, respectively. Additionally, there were apparent differences in the spatial variation of extreme precipitation. There were significant increasing trends of extreme precipitation indexes in central China and northeast China in the three periods, among which the total annual precipitation showed an increasing trend in central and northern China and a decreasing trend in western and south China. An increasing trend of annual precipitation intensity was found to be mainly concentrated in central China and south China, and the annual precipitation frequency showed a larger increasing trend at the beginning of this century. The annual precipitation frequency showed an increasing trend in the early part of this century. In general, all the indices showed an overall increasing trend in the future period, with the PRCPTOT, Rx5day, and SDII95 showing the most significant overall increasing trends.

Funder

the National Natural Science Foundation of China

the Project of the Sichuan Department of Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3