NSGA–III–XGBoost-Based Stochastic Reliability Analysis of Deep Soft Rock Tunnel

Author:

Xu Jiancong1ORCID,Sun Chen12,Rui Guorong3

Affiliation:

1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China

2. POWERCHINA Chengdu Engineering Co., Ltd., Chengdu 610072, China

3. China Railway 20th Bureau Group Co., Ltd., Xi’an 710016, China

Abstract

How to evaluate the reliability of deep soft rock tunnels under high stress is a very important problem to be solved. In this paper, we proposed a practical stochastic reliability method based on the third-generation non-dominated sorting genetic algorithm (NSGA–III) and eXtreme Gradient Boosting (XGBoost). The proposed method used the Latin hypercube sampling method to generate the dataset samples of geo-mechanical parameters and adopted XGBoost to establish the model of the nonlinear relationship between displacements and surrounding rock mechanical parameters. And NSGA–III was used to optimize the surrogate model hyper-parameters. Finally, the failure probability was computed by the optimized surrogate model. The proposed approach was firstly implemented in the analysis of a horseshoe-shaped highway tunnel to illustrate the efficiency of the approach. Then, in comparison to the support vector regression method and the back propagation neural network method, the feasibility, validity and advantages of XGBoost were demonstrated for practical problems. Using XGBoost to achieve Monte Carlo simulation, a surrogate solution can be provided for numerical simulation analysis to overcome the time-consuming reliability evaluation of initial support structures in soft rock tunnels. The proposed method can evaluate quickly the large deformation disaster risks of non-circular deep soft rock tunnels.

Funder

National Natural Science Foundation of China—Yalong River Joint Fund

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3