Adam Bayesian Gaussian Process Regression with Combined Kernel-Function-Based Monte Carlo Reliability Analysis of Non-Circular Deep Soft Rock Tunnel

Author:

Xu Jiancong12ORCID,Yan Ziteng2,Wang Yongshuai2

Affiliation:

1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China

2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China

Abstract

Evaluating the reliability of deep soft rock tunnels is a very important issue to be solved. In this study, we propose a Monte Carlo simulation reliability analysis method (MCS–RAM) integrating the adaptive momentum stochastic optimization algorithm (Adam), Bayesian inference theory and Gaussian process regression (GPR) with combined kernel function, and we developed it in Python. The proposed method used the Latin hypercube sampling method to generate a dataset sample of geo-mechanical parameters, constructed combined kernel functions of GPR and used GPR to establish a surrogate model of the nonlinear mapping relationship between displacements and mechanical parameters of the surrounding rock. Adam was used to optimize the hyperparameters of the surrogate model. The Bayesian inference algorithm was used to obtain the probability distribution of geotechnical parameters and the optimal surrounding rock mechanical parameters. Finally, the failure probability was computed using MCS–RAM based on the optimized surrogate model. Through the application of an engineering case, the results indicate that the proposed method has fewer prediction errors and stronger prediction ability than Kriging or XGBoost, and it can significantly save computational time compared with the traditional polynomial response surface method. The proposed method can be used in the reliability analysis of all shapes of tunnels.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3