Feasibility of Natural Fibre Usage for Wind Turbine Blade Components: A Structural and Environmental Assessment

Author:

Pender Kyle1ORCID,Bacharoudis Konstantinos2ORCID,Romoli Filippo1ORCID,Greaves Peter2,Fuller Jonathan1

Affiliation:

1. National Composites Centre, Bristol & Bath Science Park, Emersons Green, Bristol BS16 7FS, UK

2. Offshore Renewable Energy Catapult, Offshore House, Albert St., Blyth NE24 1LZ, UK

Abstract

There are two key areas of development across wind turbine blade lifecycles with the potential to reduce the impact of wind energy generation: (1) deploying lower-impact materials in blade structures and (2) developing low-impact blade recycling solution(s). This work evaluates the feasibility of using natural fibres to replace traditional glass and carbon fibres within state-of-the-art offshore blades. The structural design of blades was performed using Aeroelastic Turbine Optimisation Methods and lifecycle assessment was conducted to evaluate the environmental impact of designs. This enabled the matching of blade designs with preferred waste treatment strategies for the lowest impact across the blade lifecycle. Flax and hemp fibres were the most promising solutions; however, they should be restricted to use in stiffness-driven, bi-axial plies. It was found that flax, hemp, and basalt deployment could reduce Cradle-to-Gate Global Warming Potential (GWP) by around 6%, 7%, and 8%, respectively. Cement kiln co-processing and mechanical recycling strategies were found to significantly reduce Cradle-to-Grave GWP and should be the prioritised strategies for scrap blades. Irrespective of design, carbon fibre production was found to be the largest contributor to the blade GWP. Lower-impact alternatives to current carbon fibre production could therefore provide a significant reduction in wind energy impact and should be a priority for wind decarbonisation.

Funder

Innovate UK

Publisher

MDPI AG

Reference101 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3