Life Cycle Assessment of Piezoelectric Devices Implemented in Wind Turbine Condition Monitoring Systems

Author:

Aloui Rabie12ORCID,Gaha Raoudha1ORCID,Lafarge Barbara1ORCID,Celik Berk2ORCID,Verdari Caroline1

Affiliation:

1. Roberval, Centre de Recherche Royallieu, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France

2. Avenues, Centre Pierre Guillaumat, Université de Technologie de Compiègne, 60203 Compiègne, France

Abstract

Assessing the vibration signature produced by a rotating component of the wind turbine enables the identification of operational conditions and the detection of potential faults at an early stage. The main purpose is to enhance the sustainability of wind turbines while increasing the lifespan and uptime of their operational systems. This vibration analysis is based on the processing of the signal provided by sensors, which often incorporates piezoelectric transducers. This paper evaluates the consequences of employing piezoelectric sensors used for vibration measurement on electrical machines integrated into wind turbines by conducting a life cycle assessment (LCA). The widespread use of piezoelectric materials is due to their high sensitivity to vibrations, although their selection is also influenced by regulatory restrictions. This research focuses on the environmental impact of piezoelectric accelerometers used commonly in condition monitoring systems. The collected literature data on the manufacturing processes are inputted into the LCA model which is powered by the Ecoinvent 3 database. The impact assessment is carried out using the European ILCD 2011 Midpoint+ method by calculating the unique scores of the selected impact categories. The results are presented and discussed in terms of environmental indicators, as well as ecological recommendations on the design.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3