Migration Law of LNAPLs in the Groundwater Level Fluctuation Zone Affected by Freezing and Thawing

Author:

Zhou Jing,Pan Minghao,Chang Chuping,Wang Ao,Wang Yongqi,Lyu Hang

Abstract

Freezing and thawing can cause dynamic fluctuations of the groundwater level, resulting in the migration and retention of LNAPLs. However, this process is difficult to observe visually, and a suitable simulation method for its quantitative calculation is lacking. In this study, a numerical simulation is established by coupling the HYDRUS-1D software and the TOUGH program to realize dynamic simulation of the entire process of soil temperature changes, water migration, water level fluctuation, and redistribution of LNAPLs during the freeze–thaw process. The results of the study show that the process of soil freezing and thawing causes water migration, which in turn causes groundwater level fluctuation, leading to the migration and redistribution of LNAPLs within the water level fluctuation zone. In this process, the soil particle size and porosity control the response degree and speed of the water level under freezing and thawing and the spatiotemporal distribution of LNAPLs by affecting the soil temperature, capillary force, and water migration. The migration ability of free LNAPLs is determined by their own density and viscosity; the retention of residual LNAPLs is affected by soil porosity and permeability as well as LNAPL viscosity. The results of this study can not only be used to develop a simulation method for the migration and retention mechanism of LNAPLs in cold regions but also serve as a scientific and theoretical basis for LNAPL pollution control in seasonal frozen soil regions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3