Anthropogenic Organic Pollutants in Groundwater Increase Releases of Fe and Mn from Aquifer Sediments: Impacts of Pollution Degree, Mineral Content, and pH

Author:

Zhai YuanzhengORCID,Han Yifan,Xia Xuelian,Li XindaiORCID,Lu Hong,Teng Yanguo,Wang Jinsheng

Abstract

In many aquifers around the world, there exists the issue of abnormal concentrations of Fe and Mn in groundwater. Although it has been recognized that the main source of this issue is the release of Fe and Mn from aquifer sediments into groundwater under natural environmental conditions, there lacks enough reliable scientific evidence to illustrate whether the pollutants imported from anthropogenic activities, such as organics, can increase this natural release. On the basis of time series analysis and comparative analysis, the existence of an increasing effect was verified through laboratorial leaching test, and the impacts of aquatic chemical environment conditions, such as pH, on the effect were also identified. The results showed that the increase of organics in groundwater made the release of Fe and Mn more thorough, which was favorable for the increase of groundwater concentrations of Fe and Mn. The higher the contents of Fe- and Mn-bearing minerals in aquifer sediments, the higher the concentrations of Fe and Mn in groundwater after the release reaches kinetic equilibrium. Lower pH can make the leaching more thorough, but the neutral environment also increases the amount of Mn. It can be deduced that the pollutants such as organics imported by anthropogenic activities can indeed increase the releases of Fe and Mn from aquifer sediments into groundwater, thus worsening the issue of groundwater Fe and Mn pollution. The findings provide a deeper insight into the geochemical effects of Fe and Mn in the natural environment, especially in the groundwater system.

Funder

National Natural Science Foundation of China

Major Science and Technology Program for Water Pollution Control and Treatment

Beijing Advanced Innovation Program for Land Surface Science of China, and the 111 Project of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3