Abstract
This research work dealt with the development of an operational methodology with appropriate technical components for monitoring and forecasting of rice crop (Boro) production in Bangladesh. Designed system explores integrated application of remote sensing (RS) sciences and Geographic Information System (GIS) technology. Terra MODIS 16-day Normalized Difference Vegetation Index (NDVI) maximum value composite (MVC) image product MOD13A1 of 500 m spatial resolution covering Bangladesh have been utilized for a period 2011–2017. Hence the district-wise sum of NDVI on pixel-by-pixel has been calculated from Jan–April during 2011–2017. Regression analysis between district-based pixel-wise summation of MODIS-NDVI and district-wise BBS (Bangladesh Bureau of Statistics) estimated Boro production revealed strong correlation (R2 = 0.57–0.85) where in March most of the regression coefficient shows significant correlation due to maximize photosynthetic activities. Therefore, the highest regression coefficient value from derived set of coefficient value (BCP-Boro Crop Production Model 2) has been utilized to obtain year-wise rice productions for all the years (2011–2017). Global Positioning System (GPS)-based field verification, accuracy assessment and validation operation have been carried out at randomly selected geographical positions over the country using various statistical tools. The results demonstrate good agreement between estimated and predicted yearly Boro rice production during 2011–2017 time period with Mean Bias Error (MBE) = −29,881 to 19,431 M.Ton; Root Mean Square Error (RMSE) = 5238 to 11,852 M.Ton; Model Efficiency (ME) = (0.86–0.94); Correlation Coefficients = 0.65 to 0.87. Therefore MODIS-NDVI based regression model seems to be effective for Boro production forecasting. The system generally appears to be relatively fast, simple, reasonably accurate and suitable for nation-wide crop statistics generation and food security issues.
Reference93 articles.
1. What it will take to Feed 5.0 Billion Rice consumers in 2030
2. An overview of global rice production, supply, trade, and consumption
3. The future of rice production, consumption and seaborne trade: Synthetic prediction method;Purevdorj;J. Food Distrib. Res.,2005
4. Current and Future Population: Asiahttp://www.geohive.com/earth/his_proj_asia.aspx
5. Fifth Assessment Synthesis Report,2014
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献