The Cultivation of Spirulina maxima in a Medium Supplemented with Leachate for the Production of Biocompounds: Phycocyanin, Carbohydrates, and Biochar

Author:

dos Santos Wallyson Ribeiro1ORCID,da Silva Matheus Lopes1,Tagliaferro Geronimo Virginio1,Ferreira Ana Lucia Gabas2ORCID,Guimarães Daniela Helena Pelegrine1

Affiliation:

1. Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, Lorena 12602-810, Brazil

2. Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, Lorena 12602-810, Brazil

Abstract

Cyanobacteria are microorganisms that grow rapidly in an aquatic medium, showing the capacity of accumulations of biocompounds subsequently converted into value-added biocompounds. The cyanobacterium Spirulina maxima can produce pigments besides accumulating significant amounts of carbohydrates and proteins. An alternative to reducing biomass production costs at an industrial scale is the use of landfill leachate in the growing medium, as well as the mitigation of this pollutant. The objective of this work was to cultivate Spirulina maxima in a medium supplemented with leachate, using the design of experiments to evaluate the effects of leachate concentration (% v/v), light source, and light intensity in an airlift photobioreactor, analyzing them as a response to the productivity of biomass, phycocyanin, carbohydrates, and biochar. The highest values of productivity (mg L−1d−1) were 97.44 ± 3.20, 12.82 ± 0.38, 6.19 ± 1.54, and 34.79 ± 3.62 for biomass, carbohydrates, phycocyanin, and biochar, respectively, adjusted for experiment 2 with the factors of leachate concentration (5.0% v/v), light source (tubular LED), and luminosity (54 µmol m−2 s−1), respectively. The use of leachate as a substitute for macronutrients in Zarrouk’s medium for the cultivation of Spirulina maxima is a viable alternative in the production of biocompounds as long as it is used at an appropriate level.

Funder

São Paulo State Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3